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EPSY 8269: Matrix Algebra for Statistical Modeling Introduction to a Statistical Paradigm 

 

 

 

A Research Paradigm: A Model for Empirical Research 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is a basic research paradigm that we use when engaging in statistical analysis. It generally 

focuses on our ability to describe important phenomena in the population. Sometimes those 

phenomena are relatively simple, like level of education or support for a specific policy. Most of 

the time the phenomena in which we are interested are more complex, such as the association 

between socio-economic status and achievement or the impact of an intervention on closing the 

achievement gap. Often they are even more complex, or multivariate, such as the relation 

between teacher quality and student achievement in mathematics, reading, writing, and science.  

 

Whatever the level of complexity, we generally cannot study the entire population. So we select 

a sample, do analysis, estimate population parameters with statistics and associated estimates of 

precision or sampling error, from which we make an inference about the parameter in hopes of 

being able to describe the phenomena of interest in the population. 

 

This cycle of sampling, statistical estimation, and inference about a population requires a 

systematic treatment of scientific methods and rigor – more complex phenomena and more 

complex sampling require more rigor and careful research design. 
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The Basis of Inferential Statistics 

 

 

For most empirical research, we rely on sampling distribution theory and the Central Limit 

Theorem to support our ability to make inferences about the population. 

 

These are based on the known properties of the Normal Distribution  ~ N (, 
2
) 

 

Consider the estimate of the mean:  
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From sampling distribution theory, we find that the sample mean has a distribution: 
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Above, we have the basic structure for inferential statistics. We rely heavily on the properties of 

the central limit theorem that allows us to make inferences from statistics to populations, but this 

requires minimum sample sizes. In fact, we know, from the central limit theorem, that the larger 

the sample (to some extent), the more precise our estimates – the closer a given sample estimate 

will be to the population parameter. 

 

We can estimate a statistic, like the mean. Sampling distribution theory demonstrates that as we 

take all possible samples of size N, we can observe the distribution of sample means – what are 

all the possible values of a mean that can be obtained from a sample of N. We rely on the Central 

Limit Theorem to know that the distribution of sample means has a mean itself – which is the 

population mean, and sample means have a variance. The standard deviation of the sample 

means is the standard error of the mean – the standard deviation of means of size N drawn from a 

population. This provides an indication of the variability in means we might observe from 

different samples – or – the typical error in any given mean as a sample of the population. 

 

With this information, and because the Central Limit Theorem tells us that with samples of at 

least 30, the sampling distribution of the mean is normal, no matter what the shape of the 

population distribution, we can make inferential statements about the population mean. We can 

use the standard error to estimate confidence intervals, such that a known proportion of such 

confidence intervals will contain the population mean – a function of the standard normal curve. 
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A statistical paradigm 

 

 

Whenever we engage a statistical model to make inferences about the population, we must 

engage in three steps: 

 

1. Model Building 

  Specify the model for your situation; the most important step 

 

2. Estimation of Parameters 

  Getting results; the third most important step 

 

3. Testing Fit of the Model 

  Consistency between the data and the model; the second most important step 

 

 

 

Model specification is clearly the most important step and should receive the most effort and 

attention. Model misspecification is likely the most serious deficit facing educational and social-

science researchers today. 

 

Testing the fit of the model to the data is the second most important step, but far too frequently, 

ignored completely. If the model-data fit is poor, there is no way to support interpretation of the 

estimated parameters – no matter how significant they appear. 

 

Once we do these things well, we can interpret the estimated parameters. 

 

Each of these three phases is described next. 
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Building Linear Models for Data Analysis 

 

 

1.  Theory 

Always begin with theory.  Develop an argument, supported by previous literature (could 

combine several different sources) and add a personal touch. 

 

2.  Model specification (outcome[s], explanatory variables) 

Define all factors/variables involved in the theory.  Draw a diagram of the relationships 

among the variables.  Specify the outcome(s), explanatory variables, 

mediating/moderating variables, potentially confounding variables.  Argue causality 

based on the design; beware of the term “predictor.” 

 

3.  Measuring Variables (reliability and validity) 

Using standardized instruments versus self-constructed instruments.  Standardization 

population should be recent, representative, and relevant.  Self-constructed instruments 

must be piloted and evaluated.  Most direct measurement possible is best. 

 

4.  Data collection: sampling (random, convenient, purposive) 

Affects some statistical manipulations; most assume samples are randomly drawn from 

an identifiable population.  A given statistic may not be dependent on sampling method, 

but the inference is always dependent on sampling method and research design. 

 

 

Estimation of Parameters 

 

1.  Factors in the model can be fixed or random 

Fixed factors are variables in which the data in your sample represent all possible levels 

(scores, groups, treatments, behaviors, conditions) in the population to which you 

generalize. 

 

Random factors are variables in which the data in your sample represent a subset of 

levels from the population (which is infinite) sampled with a known model – and you 

wish to generalize to the entire population of all possible levels. 

 

 

2. General Linear Model Assumptions 

 

a. Structural assumptions allow us to interpret the results 

i. Observations are independent 

ii. Variables are linearly related 

iii. Explanatory variables are independent 

iv. Explanatory variables are measured without measurement error 

v. The right variables are in the model (argumentation: confounds, misspecification) 
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Regarding Structural assumptions, these are the assumptions that allow us to interpret results. 

The assumption of independent observations is related to the stochastic assumption regarding 

independence of residuals – they coincide. This allows us to consider each observation as a 

unique independent contributing piece of information. To the extent that observations provide 

common or related (dependent) information, as in the example of students nested in classrooms 

such that their academic self-efficacy is all a function of their teacher’s instructional style, we 

violate local independence of observations and should model the within-classroom dependency – 

perhaps using a multilevel model. Dependency across observations will  

 

Variables being linearly related is a simple function of the linear model – we are only estimating 

the linear component of associations among variables. So if the variables are nonlinearly related, 

we underestimate their association. 

 

Explanatory variables are independent – helping us avoid the problems with multicolinearity. To 

the extent that explanatory variables are dependent, we are unable to partition variance among 

the variables – they are confounded. 

 

Most linear models assume that explanatory variables are measured without measurement error – 

considering all variance to be true variance. There is no way to directly partition out error 

variance, unless a measurement model accompanies the estimation, such as in a structural 

equation model where we estimate latent variables and then associations among the latent 

variables – which are partitioned from the measurement error in the indicator variables. 

Measurement error results in underestimating associations and effects. 

 

Finally, the right variables are in the model – that is, the model is correctly specified. This is the 

source of most research efforts in education and the social sciences. We believe we can do a 

better job of estimating effects than the previous researcher, because we have a better set of 

variables to account for the phenomena of interest.  

 

 

b. Stochastic assumptions allow us to test parameter estimates 

i. Errors have a mean of zero 

ii. Errors have constant variance; homoscedasticity 

iii. Errors are normally distributed 

iv. Errors are independent 

v. Errors are independent of explanatory variables 

 

 

Regarding the stochastic assumptions, these are the assumptions that allow us to test parameter 

estimates regarding their statistical significance – the extent to which they are likely to exist in 

the population. The assumption that errors have a mean of zero is critical because their overall 

effect on a parameter estimate then is zero – statistical estimates of parameters are unbiased. In 

OLS, the model is defined to minimize the differences between observed and predicted values, 

equalizing the errors that are positive and negative, so the mean is zero. 
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Errors also are assumed to have constant variance or be homoscedastic. This allows us to 

estimate a single value for the residual or error variance – such as the standard error of the 

estimate – the standard deviation of residuals about the regression line. Employing a single 

standard error is key to most statistical tests. We will see this shortly. Heteroscedasticity leads to 

increased Type I error rates. 

 

Errors are normally distributed allows us to make probabilistic statements about the likely size of 

an error or residual – based on the standard normal curve (68% of values fall within +/- 1 SD). 

This is also somewhat intuitive, that most errors are quite small and few errors are extreme. Non-

normal error distributions can result from outliers, among other things, and result in problematic 

standard error estimation and incorrect confidence intervals. 

 

Errors are independent – related to the independence of observations – allows us to decompose 

or partition variance in a simple manner – total variance can be partitioned into variance due to 

prediction and variance due to error. The error terms are independent so their variance can be 

estimated in a direct way – based on squared deviations from the mean (of zero), simply the 

squared errors. Sometimes this is violated in time-series data, where other error models like auto- 

or serial-correlation are characteristics. 

 

Errors are independent of explanatory variables, providing us with the freedom to interpret the 

effect of explanatory variables directly. In the event that these last few assumptions are violated, 

such that errors are not independent or are related to the explanatory variables, this is often an 

indicator of model misspecification (potential confounding or omitted variables) – leading to 

complex associations among estimated parameters, preventing us from testing the statistical 

significance of our statistics as estimates of the parameters of interest. 

 

 

 

Additional assumptions in multivariate contexts: 

 

If the X variables are thought of as random, then we make the general assumption that the 

joint distribution of Y and the Xs is multivariate normal.  If the X variables are fixed, we 

assume the conditional distributions of Y (given the Xs) are independently and normally 

distributed.  Moderate departures of either set of assumptions are tolerable.   
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Testing the Fit of the Model & Related Issues 

 

 

The methods for testing the fit of the model depend on the model being tested. But, these tests 

and principles build on each other as models become more complex – the simpler modeling 

requiring simple tests, more complex models requiring more complex tests. We start with the 

principle of parsimony. Sometimes, we lose interpretability and meaning by building more 

complex models – where simple is better. But, simple may also be misleading and not tell the 

whole story. 

 

1.  Parsimony 

 The simpler model is better 

 

2.  Correlations 

 Squared correlations tell you the % of variance explained (coefficient of determination). 

 

3.  Simple Regression 

 

 R is the correlation between the outcome and the explanatory variable.   

 

R
2
 is the same as the squared correlation between the outcome and explanatory variable.  

It is a variance accounted for statistic. 

Remember, 
Total

gression

SS

SS
R

Re2  .  To test the hypothesis that R
2
 = 0, 

 
)1(

ˆ1

ˆ

2

2






kn
R

k
R

F , 

with k and n-k-1 df.  This is equivalent to 
sidual

gression

MS

MS
F

Re

Re
 . 

 

Also: check the size of the Standard Error of the Estimate (standard deviation of 

residuals). We know that as you add predictors to a model, the variance explained will 

generally increase. However, if those predictors are adding more noise than signal, the 

standard error of the estimate will increase – indicating less precision in prediction. We 

can increase explained variance while reducing precision. 

 

4.  Multiple Regression 

 

Here, R is the multiple correlation between the model-predicted scores Ŷ  and the 

observed scores Y.   

 

R
2
 is the squared multiple correlation; the percent of variance explained in the outcome 

by the linear combination of explanatory variables.  Standard Error is analogous to the 

size of the average error of prediction, the standard deviation of the residuals as above.   
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5.  Analysis of Variance 

 Eta-squared, 
2
, is an estimate of the maximum squared correlation between the 

independent variable and the dependent variable – it can be treated as any squared 

correlation, the proportion of variation accounted for. 

 
total

between2

SS

SS
  

 Eta-squared is generally biased upward when based on sample data.  Omega-squared is 

an adjusted value that is better for most purposes. 

 In Analysis of Variance, the test of mean differences is one of whether the variation 

between groups is greater than the variation remaining within groups 

   0H

2J

1j

j0 


  
W

B

MS

MS
F   

 

6.  Controlling overall Type-I error rate () 

Compute a test-wise  to control the overall study-wise  when conducting multiple tests 

on the same data:  c )1(1 ; where c is the number of statistical tests or contrasts 

conducted, and  is the test-wise Type-I error rate used to determine statistical 

significance for each statistical test on the same data set. 
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Statistical Modeling 
 

 

Observations are composed of true (systematic) & error (random) components: Xi = Ti + Ei 

 

 

The notation of Regression 

 

 

                             
 

where: 

Yi is the outcome value for individual i, where i = 1, …, N 

0 …  P are parameters 

X1i … XPi are known constants associated with the P explanatory variables 

i are iid (independently and identically distributed) 

 

 

In terms of estimation: 

 

                             
 

    ̂     
 

This is the simple statement: the observed value equals the sum of the predicted value plus error. 

 

 

Since the error terms are assumed to be independent of the predictors and predicted values (and 

homoscedastic), the variance in Y is partitioned through sums of squares into two independent 

components: 

 

SStotal = SSregression + SSresidual 

 

       
  
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Xi is the observed score on X, and Yi is the observed score on Y. 

The mean of X and Y are marked and intersect on the OLS line. 

 

  

Y
i
 

X 

Y 

iŶ
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Deviations can be represented as the difference between the observed and mean scores. 

Total sums of squares is based on the summed squared deviations of observed values from the 

mean. 
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Y 
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Consider the score of Xi. The OLS line predicts a value of  

Even though we know the real value for individual i is Yi . 

The difference between the observed value and the predicted value is the residual. 

 

  

Y

X 

Y 

iŶ
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Without information on X, our best guess of the associated Y value is the mean. 

The regression improvement of this best guess is the difference between 

the OLS predicted value and the mean of Y. 

 

  

Y

X 

Y 
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SStotal      =  SSregression       +  SSerror 
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In regression, we consider conditional distributions of Y given X. The SD of  

these distributions of Y conditional on X is the standard error of the estimate, SEe. 

The assumption of homoscedasticity suggests a constant SEe across values of X. 

 

  

X 

Y 

𝑋  
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The notation of Analysis of Variance 

 

 

In ANOVA, we examine variation in Y for individual i in group j as a function of the group 

means μj and the residual ε for individual i. We can also partition this variation as a function of a 

grand mean μ, group deviations from the grand mean αj, and individual residuals. 

 

 

ijjijY    ijjijY   

 

where: 

Yij is the outcome for individual i in group j, where i = 1, …, N; and j = 1, …, J. 

j are parameters, deviations between group means and the grand mean 

i are iid (independent and identically distributed) 

 

 

In ANOVA we condition Y on X partitioning the distribution by X 

 

Variance in Y is partitioned through sums of squares: 

 

SStotal = SSbetween + SSwithin 
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Michael C. Rodriguez, 2014 17 

 

 
 

 

 

The distribution of scores on Y for three groups are illustrated. 

Each distribution has a mean and variance. The assumption for ANOVA is  

homogeneity of variance across groups. 
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The deviation on Y for individual i in group j is illustrated above. 

The total sums of squares is the sum of squared deviations across all groups. 
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In the absence of information about group members, our best prediction of score on Y is the 

grand mean. Deviations between group means and the grand means constitute between group 

scores. 
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The deviation on Y for individual i in group j is illustrated above. 

The total sums of squares is the sum of squared deviations across all groups. 
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SStotal             = SSbetween         + SSwithin 
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The General Linear Model 

 

 

Note that the partitioning of sums of squares for regression and ANOVA is equivalent. 

This equivalence leads us to the General Linear Model. 

 

 

Regression: 

 

SStotal       =  SSregression      +  SSerror 
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ANOVA: 

 

SStotal               = SSbetween           + SSwithin 
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The notation of the General Linear Model  

 

 

 y = X b + e 
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When we employ a design matrix in Analysis of Variance, the model is parallel to the regression 

model with a matrix of explanatory variables. 

 

A data matrix will contain rows of cases and columns of variables; for example:  

 

ID SAT GPA Gender IQ 

1 560 3.0 1 112 

2 780 3.9 0 143 

3 620 2.9 0 124 

4 600 2.7 1 129 

 

Consider a study where SAT is the outcome variable of interest and the others are explanatory 

variables. 
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Multivariate Regression, ANOVA 

 

 Multiple Outcomes, generally correlated 

 Assumption:  multivariate normality 

 

 Y = X B+ E 

 

GLM is the general expression of partitioning of variance conditioned on the continuous P 

variables (Xs) or conditioned over J groups. 


