Program:

HLM 7 Hierarchical Linear and Nonlinear Modeling

Authors:

Stephen Raudenbush, Tony Bryk, & Richard Congdon

Publisher:

Scientific Software International, Inc. (c) 2010

techsupport@ssicentral.com
www.ssicentral.com


Module:

HLM2.EXE (7.01.21202.1001)

Date:

3 October 2017, Tuesday

Time:

11:37:46


 

Specifications for this HLM2 run

Problem Title: no title

The data source for this run = mathread.mdm
The command file for this run = C:\Users\mcrdz\AppData\Local\Temp\whlmtemp.hlm
Output file name = C:\Users\mcrdz\Desktop\DocumentsMCR\COURSES\EPSY8268-HLM\Data\hlm2.html
The maximum number of level-1 units = 2700
The maximum number of level-2 units = 47
The maximum number of iterations = 100

Method of estimation: restricted maximum likelihood

The outcome variable is MATH05

Summary of the model specified

Level-1 Model

    MATH05ij = β0j + rij

Level-2 Model – beta naught

    β0j = γ00 + u0j

Mixed Model

    MATH05ij = γ00  + u0j+ rij

Run-time deletion has reduced the number of level-1 records to 2670

Final Results - Iteration 4

Iterations stopped due to small change in likelihood function

σ2 = 1368.99619

τ

INTRCPT1,β0  

   100.28957

 

Random level-1 coefficient

  Reliability estimate

INTRCPT1,β0

0.788

The value of the log-likelihood function at iteration 4 = -1.346427E+004

Final estimation of fixed effects:

Fixed Effect

 Coefficient

 Standard
error

 t-ratio

 Approx.
d.f.

 p-value

For INTRCPT1, β0

    INTRCPT2, γ00

664.198318

1.645368

403.678

46

<0.001

 

Final estimation of fixed effects
(with robust standard errors)

Fixed Effect

 Coefficient

 Standard
error

 t-ratio

 Approx.
d.f.

 p-value

For INTRCPT1, β0

    INTRCPT2, γ00

664.198318

1.628683

407.813

46

<0.001

 

Final estimation of variance components

Random Effect

Standard
 Deviation

Variance
 Component

  d.f.

χ2

p-value

INTRCPT1, u0

10.01447

100.28957

46

254.47247

<0.001

level-1, r

36.99995

1368.99619

 

 

 

Statistics for current covariance components model

Deviance = 26928.537778
Number of estimated parameters = 2