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Abstract 

Score equating is essential for any testing program that continually produces new editions of a 

test and for which the expectation is that scores from these editions have the same meaning over 

time. Particularly in testing programs that help make high-stakes decisions, it is extremely 

important that test equating be done carefully and accurately. An error in the equating function or 

score conversion can affect the scores for all examinees, which is both a fairness and a validity 

concern. Because the reported score is so visible, the credibility of a testing organization hinges 

on activities associated with producing, equating, and reporting scores. This paper addresses the 

practical implications of score equating by describing aspects of equating and best practices 

associated with the equating process.  
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Score equating is essential for any testing program that continually produces new editions of 

a test and for which the expectation is that scores from these editions have the same meaning over 

time. Different editions may be built to a common blueprint and be designed to measure the same 

constructs, but they almost invariably differ somewhat in their psychometric properties. If one 

edition is more difficult than another, examinees would be expected to receive lower scores on the 

harder form. Score equating seeks to eliminate the effects on scores of these unintended differences 

in test form difficulty. Score equating is necessary to be fair to examinees and to provide score users 

with scores that mean the same thing across different editions or forms of the test. 

Particularly in testing programs that help make high-stakes decisions, it is extremely 

important that test equating be done carefully and accurately. The reported scores, even though 

they represent the endpoint of a large test production, administration, and scoring enterprise, are 

the most visible part of a testing program. An error in the equating function or score conversion 

can affect the scores for all examinees, which is both a fairness and a validity concern. Because 

the reported score is so visible, the credibility of a testing organization hinges on activities 

associated with producing, equating, and reporting scores 

This paper addresses the practical implications of score equating by describing best (and 

some not-best) practices associated with the equating process.1 Even just since 2000, there have 

been several books published on equating, as well as several review chapters. These are cited in 

Section 1 of this paper. Readers should refer to these sources for extensive treatments of equating 

and linking. Section 1 introduces and distinguishes test score equating as a special case of the 

more general class of procedures called score linking procedures. Section 2 is concerned with the 

material available before data are collected for equating—the tests, the anchor tests, the old-form 

or reference-form raw-to-scale scaling function, and the number of reference forms available. 

Section 3 focuses on the most common data collection designs used in the equating of test 

scores. In Section 4 we describe some common observed-score equating functions. Section 5 

describes common data-processing practices that occur prior to computations of equating 

functions. Section 6 is concerned with how to evaluate an equating function, as well as post-

equating activities. 
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1. Linking and Equating: Foundational Aspects 

The term score linking is used to describe the transformation from a score on one test to a 

score on another test; score equating is a special type of score linking. Since the turn of the 

century, much has been written on score equating and linking. The most complete coverage of 

the entire field of score equating and score linking in general has been provided by Kolen and 

Brennan (2004). The book by von Davier, Holland, and Thayer (2004) introduced several new 

ideas of general use in equating, although its focus is on kernel equating. Uncommon Measures 

(Feuer, Holland, Green, Bertenthal, & Hemphill, 1999) and Embedding Questions (Koretz, 

Bertenthal & Green, 1999), two book-length reports from the National Research Council, contain 

summaries of informed, professional judgment about the issues involved in linking scores on 

different educational tests. Livingston (2004) has given a straightforward description of many of 

the major issues and procedures encountered in practice.  

Holland and Dorans (2006) provided a historical background for test score linking, building 

on work by Angoff (1971), Flanagan (1951), and Petersen, Kolen, and Hoover (1989) Holland and 

Dorans (2006) discussed ways other than test equating that scores on different tests are connected 

or linked together. Several chapters in Dorans, Pommerich, and Holland (2007) addressed 

important issues in score equating (Cook, 2007; Holland, 2007; Kolen, 2007; Petersen, 2007; von 

Davier, 2007). With all this background material available to the reader, we can be brief and 

incisive in our treatment of the salient issues, first distinguishing different types of linking and then 

using these distinctions when describing equating issues in Sections 2 through 6. 

1.1. Classes of Score Linking Methods: Definition of Terms 

Holland and Dorans (2006) provided a framework for classes of score linking that built 

on and clarified earlier work found in Mislevy (1992) and Linn (1993). Holland and Dorans 

made distinctions between different types of linkages and emphasize that these distinctions are 

related to how linked scores are used and interpreted. A link between scores on two tests is a 

transformation from a score on one test to a score on another test.  

There are different types of links, and the major difference between these types is not 

procedural, but interpretative. Holland and Dorans (2006) divided linking methods into three 

basic categories called predicting, scale aligning, and equating. It is essential to understand why 

these categories differ because they are confused in practice. For the sake of best practices, 
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understanding the distinctions among these categories and communicating them to test users can 

prevent violations of professional practices. 

Predicting. Predicting is the oldest form of score linking. Since the earliest days of 

psychometrics, predicting has been confused with equating. An example comes from Embretson 

and Reise (2000): “In linear equating, for example, scores on one test form are regressed on the 

other test form” (p. 21). The goal of predicting is to predict an examinee’s score on a test based 

on other information about that examinee. This information can be multivariate in nature, 

including scores from several other tests, demographic information, or other types of cognitive 

information (e.g., grades in selected courses). The goal is to minimize errors of prediction of a 

score on the dependent or criterion variable from information on other predictor variables. This 

goal guarantees an asymmetry between what is being predicted and what is used to make the 

prediction. This asymmetry prevents prediction from meeting one of the fundamental 

prerequisites of equating that will be discussed in the paper, namely to produce scores that can be 

used interchangeably. Hence, prediction cannot be used to equate scores or produce scores with 

comparable score properties. 

Scale aligning. The goal of scale aligning is to transform the scores from two different 

tests onto a common scale. Scaling procedures are about 100 years old. Scale aligning is the 

second category in the Holland and Dorans (2006) framework. Scale aligning has many 

subcategories, including activities such as battery scaling (Kolen, 2004), anchor scaling (Holland 

& Dorans, 2006), vertical scaling (Harris, 2007; Kolen & Brennan, 2004; Patz & Yao, 2007; 

Yen, 2007), calibration (Holland & Dorans, 2006), and concordance (Pommerich & Dorans, 

2004). The interested reader is urged to consult Holland and Dorans (2006) and Kolen (2006). 

Scale aligning and score equating are often confused because the statistical procedures used for 

scale alignment also can be used to equate tests.  

Equating. Equating is the strongest form of linking between the scores on two tests. 

Equating may be viewed as a form of scale aligning in which very strong requirements are 

placed on the tests being linked. The goal of equating is to produce a linkage between scores on 

two test forms such that the scores from each test form can be used as if they had come from the 

same test. Strong requirements must be put on the blueprints for the two tests and on the method 

used for linking scores in order to establish an effective equating. Among other things, the two 

tests must measure the same construct at almost the same level of difficulty and with the same 
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degree of reliability. Some test design practices that can help ensure the achievement of equating 

requirements are described in Section 2. 

A multi-step process is used to put scores from a new test onto an existing score reporting 

scale. Best practices should be used in all of these steps. Before the new test form is 

administered, there exists a conversion, s(y), for an old test form that takes raw scores, y, on the 

old test form, Y, onto the score reporting scale. This old form scaling function, s(y), is 

independent of the new form. Once data are collected on the new form, data from the new form 

and the old form are used to compute a raw-to-raw equating function, e(x), which links raw 

scores x on a new test, X, to those of an old test form Y. Equated raw scores are produced via 

this linking. The final step is to produce a function that converts these equated X raw scores to 

the score reporting scale by composing the equating function, y = e(x) with s(y) to put the raw 

scores of X onto the reporting scale, s(x) = s(e(x)), known as the score conversion function for X. 

We will discuss the final score conversion function that is used in practice because it is the 

ultimate end-product of the equating process that will be described in Sections 2–6. The raw-to-

raw equating is not an end, but rather the means to an end—an appropriate score conversion 

function. This critical point is sometimes given short shrift in discussions of equating that focus 

on methods. 

1.2. What Constitutes an Equating? 

The goal of equating is what distinguishes it from other forms of linking. The goal of 

score equating is to allow the scores from both tests to be used interchangeably. Experience has 

shown that the scores and tests that produce the scores must satisfy very strong requirements to 

achieve this demanding goal of interchangeability. 

In an ideal world, test forms would be assembled to be strictly parallel so that they would 

have identical psychometric properties. Equating would then be unnecessary. In reality, it is 

virtually impossible to construct multiple forms of a test that are strictly parallel, and equating is 

necessary to fine-tune the test construction process.  

Five requirements are widely viewed as necessary for a linking to be an equating 

(Holland & Dorans, 2006). Those requirements are: 

1.   The Equal Construct Requirement: The two tests should both be measures of the 

same construct (latent trait, skill, ability). 
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2.   The Equal Reliability Requirement: The two tests should have the same level of 

reliability. 

3.   The Symmetry Requirement: The equating transformation for mapping the scores of Y 

to those of X should be the inverse of the equating transformation for mapping the 

scores of X to those of Y. 

4.   The Equity Requirement: It should be a matter of indifference to an examinee as to 

which of two tests the examinee actually takes. 

5.   The Population Invariance Requirement: The equating function used to link the 

scores of X and Y should be the same regardless of the choice of (sub) population 

from which it is derived. 

Both formal and informal statements of subsets of these five requirements have appeared 

in a variety of earlier sources, including Angoff (1971), Lord (1950, 1980), Kolen and Brennan 

(2004), and Petersen et al. (1989). Dorans and Holland (2000) explicitly discussed these five 

requirements and indicate various ways in which the five “…can be criticized as being vague, 

irrelevant, impractical, trivial, or hopelessly stringent” (p. 283). For example, Lord (1980) 

regarded Requirement 4 as the most fundamental, while Livingston (2004) argued that 

Requirements 4 and 5 are unattainable in practice.  

With respect to best practices, Requirements 1 and 2 mean that the tests need to be built 

to the same specifications, while Requirement 3 precludes regression methods from being a form 

of test equating. Lord (1980) argued that Requirement 4 implies both Requirements 1 and 2. 

Requirement 4 is, however, hard to evaluate empirically and its use is primarily theoretical 

(Hanson, 1991; Lord, 1980). As noted by Holland and Dorans (2006), Requirement 5, which is 

easy to assess in practice, also can be used to explain why Requirements 1 and 2 are needed. If 

two tests measure different things or are not equally reliable, then the standard linking methods 

will not produce results that are invariant across certain subpopulations of examinees. Dorans 

and Holland (2000) used Requirement 5, rather than Requirement 4, to develop quantitative 

measures of equatability that indicate the degree to which equating functions depend on the 

subpopulations used to estimate them. For example, a conversion table relating scores on a 

mathematics test to scores on a verbal test developed on data for men would be very different 

from one developed from data on women, since, women tend to do less well than men on 
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mathematics tests. Articles that study subpopulation issues in equating contexts and more general 

linking contexts are included in special issues of Journal of Educational Measurement (Dorans, 

2004) and Applied Psychological Measurement (von Davier & Liu, 2008). 

2. Test Specifications and Score Linking Plans 

2.1 Test Specifications 

Based on the equity condition (Requirement 4 in Section 1.2), Lord (1980) stated that 

equating was either unnecessary (because it pertains to test forms intended to be parallel) or 

impossible (because strictly parallel test forms are not likely to be constructed in practice). Even 

so, equatings are conducted to ensure fair assessment. While there is not much that can be done 

about the impossible aspect, best practices can be used to try to make equating as unnecessary as 

possible. Poor quality tests cannot be equated properly for several reasons. For one, they may not 

measure the same construct. Proper test development increases the likelihood that equating will 

be unnecessary. Well-defined test specifications are a necessary first step. Test editions need to 

be constructed to the same blueprint. Under proper assembly rules, old and new forms are 

equally reliable measures of the same construct that are built to the same set of well-specified 

content and statistical specifications.  

Untried or new test questions need to be pretested, and pretested under conditions that 

reflect actual test administration conditions. When the test forms are composed of unpretested 

questions or questions pretested in small samples, there is greater likelihood that test forms will 

not be identical and that equating adjustments will be necessary. Plans for test development 

should be based on the availability of high quality pretested material. Continuous testing can 

often undermine the quality of tests and test scores by draining pools of pretested items more 

quickly than these items can be replenished. 

2.2 Anchor Test 

As noted earlier, an anchor test often plays a crucial role in the equating process (see 

Sections 3.4, 4.2, and 4.3). An anchor test design allows a new test to be used and equated at 

each successive operational test administration. This is desirable in high-stakes situations where 

test reuse may lead to test security problems. The anchor test is used to account for any 

differences in ability between nonequivalent groups taking the new and old test forms. The 

anchor needs to be highly related to both tests.  
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It is generally considered good practice to construct the anchor test according to the test 

specifications, so that it is a mini-version of the two tests being equated. That means it should 

have the same difficulty level and contain the same content as the tests to be equated. In some 

cases, the anchor test is administered externally in a separately timed section and performance on 

this section does not count toward examinee scores. Sometimes when such an external anchor is 

not available, internal anchors, composed of scored items that are interspersed among other 

scored items, are used.2 In this case, context effects become a possible issue. To minimize these 

effects, internal anchor (or common) items are often placed in the same location within each test. 

For a more complete discussion of context effects, see Section 3.5. 

The use of an anchor test design requires users to make one of several possible sets of 

untestable, missing-data assumptions in order to interpret the linking results as constituting an 

equating, as will be discussed in Section 4.2. In addition, great care must be taken in collecting 

and analyzing the data with these anchor test designs, as we will discuss in Section 5.3. 

2.3 Score Linking Plans 

The raw-to-raw equating is not an end, but rather the means to an end, namely an 

appropriate score conversion function. As noted earlier, a multi-step process is used to put scores 

from a new test onto an existing score reporting scale and best practices should be used for all of 

these steps. The final step in the process is to produce a function that converts the equated X-raw 

scores to the score reporting scale by composing the equating function, y = e(x) with s(y). This 

puts the raw scores of X onto the reporting scale, ss(e(x)). The existing score scale for a test 

limits the quality of the new-form scaling that can be achieved via the equating of a new form. 

Equatings can produce poor new-form scalings if the old-form scaling itself is problematic. Even 

tests as widely used as the SAT® could have undesirable new-form scalings that were arising 

from poor alignment of the score scale with the intended uses of the test score. In the case of the 

SAT, poor score scale alignment, where the average Math score was 50 points higher than the 

average Verbal score led to widespread misinterpretations about a person’s relative verbal and 

mathematical ability. This was rectified by recentering the SAT scores (Dorans, 2002). Many 

score scales suffer from poor construction while others discard useful information because of the 

way the meaning of the scale changes over time. For example, many of the numerous 800 scores 

on the GRE ® Quantitative scale would exceed 800 if the scale were not capped at 800 (Dorans, 
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Yu, & Guo, 2006). In other words, the value that best equating practices have for reported scores 

is sometimes constrained by factors that lie outside the domain of equating. 

Testing programs using best practices have well-designed score equating plans and well-

aligned score scales that increase the likelihood that scores on different forms can be used 

interchangeably. Links to multiple old forms are preferable to a link to a single old form. The 

SAT plan is an example of a sound linking plan that works well, as demonstrated by Haberman, 

Guo, Liu, and Dorans (2008). Some testing programs link in a haphazard way and hope that 

some magical method of score equating will play the role of deus ex machina to set scores 

straight. Data collection planning, development of linking plans, and maintenance of score scales 

are crucial best practices. 

3. Data Collection Designs Used in Test Score Equating 

To obtain the clearest estimates of test form difficulty differences, all score equating 

methods must control for differential ability of the examinee groups employed in the linking 

process. Data collection procedures should be guided by a concern for obtaining equivalent 

groups, either directly or indirectly. Often two different, non-strictly parallel tests are given to 

two different groups of examinees of unequal ability. Assuming that the samples are large 

enough so that one can ignore sampling error, differences in the distributions of the resulting 

scores can be due to one or both of two factors. One factor is the relative difficulty of the two 

tests and the other is the relative ability of the two groups of examinees on these tests. 

Differences in difficulty are what test score equating is supposed to take care of; difference in 

ability of the groups is a confounding factor that needs to be eliminated before the equating 

process can take place. 

In practice there are two distinct approaches for addressing the separation of test 

difficulty and group ability differences. The first approach is to use a common population of 

examinees, so that there are no ability differences. The other approach is to use an anchor 

measure of the construct being assessed by X and Y. When the same examinees take both tests, 

we achieve direct control over differential examinee ability. In practice, it is more common to 

use two equivalent samples of examinees from a common population instead of identical 

examinees. The second approach assumes that performance on a set of common items or an 

anchor measure can quantify the ability differences between two distinct, but not necessarily 

equivalent, samples of examinees. The use of an anchor measure can lead to more flexible data 
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collection designs than those that make use of common examinees. However, the use of anchor 

measures requires users to make various assumptions that are not needed when the examinees 

taking the tests are either the same or from equivalent samples. When there are ability 

differences, the various statistical adjustments for ability differences often produce different 

results. 

In all of our descriptions, we will identify one or more populations of examinees and one 

or more samples from these populations. We will assume that all samples are random samples 

even though in practice this may be only an approximation. More extended discussions of data 

collection designs can be found in Angoff (1971), Holland and Dorans (2006), Kolen and 

Brennan (2004), Petersen et al. (1989), and von Davier et al. (2004). 

3.1. The Single Group (SG) Design 

The single group (SG) design is the simplest data collection design. In the single group 

design, all examinees in a single sample of examinees from population P take both tests. The 

single group design can provide accurate equating results with relatively small sample sizes.  

The design table (von Davier et al., 2004) for the SG design is given in Table 1. 

Table 1 

Design Table for the Single Group (SG) Design  

Population Sample X Y 
P 1 @ @ 

Note. @ indicates examinees in sample for a given row take tests indicated in a given column; 

lack of @ indicates score data were not collected for that combination of row and column.  

The SG design controls for any possibility of differential examinee proficiency by having 

the same examinees take both tests. It has several major uses in the practice of scaling and 

equating. In using this design, however, it is necessary to assume that an examinee’s score on the 

second test form is unaffected by the fact that she or he previously has taken the first form. That 

is, it must be plausible that practice and other types of order effects can be ignored.  

3.2. The Equivalent Groups (EG) Design  

In most equating situations, it is impossible to arrange for enough testing time for every 

examinee to take more than one test. The simplest solution is to have two separate samples take 
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each form of the test. In the equivalent groups (EG) design, two equivalent samples are taken 

from a common population P one is tested with X and the other with Y. The EG design is often 

used for equating. 

The design table for the EG design, Table 2, clearly shows the pattern of missing data 

(i.e., the cells missing the @ mark).  

Table 2 

The Design Table for the Equivalent Groups (EG) Design 

Population Sample X Y 
P 1 @  
P 2  @ 

Note. @ indicates examinees in sample for a given row take tests indicated in a given column; 

lack of @ indicates score data were not collected for that combination of row and column.  

Because examinees take only one test, the issue of order effects does not arise with the 

EG design. The problem is to select samples that are equivalent in whatever the tests are 

supposed to measure. In practice, this is done in two ways. First, it is sometimes possible to take 

two random samples from P and test each with a single test. To reflect this possibility, this 

design is sometimes called the random groups design (Kolen & Brennan, 2004). The two 

samples are then as equivalent as two random samples from the same population can be. Second, 

and more commonly, two samples are constructed by spiraling the test booklets for the two tests. 

The booklets are alternated in the packaging process so that when the tests are distributed to 

examinees they are alternated, first X, then Y, and then X again, and so on. Certain assumptions 

must hold in order for spiraling to be feasible. For example, the time limits must be the same for 

the two tests. Well-executed, spiraled samples are often somewhat more equivalent (i.e., less 

different) than random samples. They are more equivalent because they are approximately 

stratified random samples where the strata are the administrative divisions of the tested 

population (i.e., classrooms, schools). 

The EG design is fairly convenient to administer. It does not require that the two tests 

have any items in common, but this design can be used even when they do have items in 

common. It also has some limitations. One limitation is that it requires large sample sizes to 

produce accurate equating results. It also may have some consequences for test security because 
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in most cases the old form in the design will have been administered previously. However, when 

samples sizes are large and forms can be reused without security problems, the EG design is 

usually regarded as a good choice because it avoids the issue of possible order effects that can 

arise in the SG design, where each examinees takes both tests.  

3.3. The Counterbalanced (CB) Design  

In order to allow for the possibility of order effects in the SG design, the sample is 

sometimes randomly divided in half and in each half-size subsample the two tests are taken in 

different orders—X first and then Y or Y first and then X. The result is the counterbalanced (CB) 

data collection design.  

If we denote a score from X as X1 when it is taken first and X2 when it is taken second, 

and similarly for Y1 and Y2, then Table 3 describes the CB design. 

Table 3 

Design Table for the Counterbalanced (CB) Design 

Population Sample X1 X2 Y1 Y2 

P 1 @   @ 

P 2  @ @  

Note. @ indicates examinees in sample for a given row take tests indicated in a given column; 

lack of @ indicates score data were not collected for that combination of row and column.  

The CB design contains both the SG and EG designs within it. There are SG designs for 

both X1 and Y2 and X2 and Y1. There is an EG design for X1 and Y1 and for X2 and Y2. The main 

advantage of the CB design is the same as that of the SG design: accurate equating results from 

relatively small samples. Its main disadvantage is that it seldom can be fit within an operational 

administration of a test. Usually, the CB design requires a special study for collecting the data. 

3.4. The Anchor Test or Nonequivalent Groups With Anchor Test (NEAT) Design 

In anchor test designs there are two populations, P and Q, with a sample of examinees 

from P taking test X, and a sample from Q taking test Y. In addition, both samples take an 

anchor test, A. We follow the terminology of von Davier et al. (2004) and call this the 

nonequivalent groups with anchor test (or NEAT) design. Kolen and Brennan (2004) and others 
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have referred to this as the common-item nonequivalent groups design or simply the common 

item or the anchor test design.  

The NEAT design is used for equating and some forms of scale aligning, as indicated in 

Holland and Dorans (2006). Table 4 represents the NEAT design. 

Table 4 

Design Table for the Nonequivalent Groups With Anchor Test (NEAT) Design 

Population Sample X A Y 

P 1 @ @  

Q 2  @ @ 

Note. @ indicates examinees in sample for a given row take tests indicated in a given column; 

lack of @ indicates score data were not collected for that combination of row and column.  

The role of the anchor test is to quantify the differences in ability between samples from 

P and Q that affect their performance on the two tests to be equated, X and Y. The best kind of 

an anchor for equating is a test that measures the same construct that X and Y measure. The 

anchor A is usually a shorter and less reliable test than the tests to be equated.3  

Formally, the NEAT design contains two single-group designs within it. The anchor test 

design is more flexible than the EG design because it allows the two samples taking X and Y to 

be different or nonequivalent. It is also more efficient than the SG design because it does not 

require examinees to take both X and Y. While the use of anchor tests may appear to be a minor 

variation of the previous data collection designs, the use of common items involves new 

assumptions that are not necessary in the use of SG, EG, and CB designs, where common 

examinees are used; see Sections 2.1 to 2.3 of Holland and Dorans (2006). Some type of 

assumption, however, is required in the NEAT design to make up for the fact that X is never 

observed for examinees in Q and Y is never observed for examinees in P. For this reason, there 

are several distinct methods of scaling and equating tests using the NEAT design. Each of these 

methods corresponds to making different untestable assumptions about the missing data, as 

reported in Sections 4.2 and 4.3 of this paper.  

One way to think about the difference between the NEAT design and the SG, EG, and 

CB designs is as the difference between observational studies versus experimental designs 
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(Rosenbaum, 1995). The SG design is like a repeated measures design with a single group and 

two treatments, the EG design is like a randomized comparison with two treatment groups, and 

the CB design is like a repeated measures design with a single group and counterbalanced order 

of treatments. In contrast, the NEAT design is like an observational study where there are two 

nonrandomized study groups that are possibly subject to varying amounts of self-selection. 

When P and Q are different or nonequivalent, the statistical role of A is to remove bias in 

the equating function that would occur if we presumed the groups were equivalent, as well as to 

increase precision in the estimation of the equating function. When A is a miniature version of X 

and Y (i.e., a mini-test that is shorter and less reliable but otherwise measures the same construct 

as the two tests to be linked), it can be expected to do a good job of removing any bias due to the 

nonequivalence of P and Q. When A is not really a measure of the same construct as X and Y, or 

if it is not highly correlated with them, A is less useful for removing bias or for increasing 

precision.  

3.5 Discussion of Data Collection Designs 

Data collection is one of the most important aspects of best practices in equating. Each of 

the data collection designs mentioned in this section has advantages and disadvantages that make 

it more or less useful for different situations. For equating, the SG design requires the smallest 

sample sizes and the EG design requires the largest sample sizes to achieve the same level of 

accuracy, as measured by the standard error of equating (see Holland & Dorans, 2006; Lord, 

1950). The anchor test (i.e., NEAT) designs require sample sizes somewhere in between those of 

the SG and EG designs, although the sample size requirements depend on how strongly 

correlated the anchor test is with the two tests to be equated and how similar the two populations 

are. Higher correlations and smaller differences in proficiency between populations require 

smaller sample sizes than do lower correlations and larger differences in proficiency between 

populations. 

We would argue that the ideal design, in theory and in terms of best practice, is a large-

sample (EG) design with an external anchor test. If the anchor test is administered last, only the 

anchor test can be affected by possible order effects. A comparison of the distributions of the 

anchor test in the two (equivalent) samples then allows differential order effects to be identified, 

and if they are substantial the anchor test can be ignored, leaving a simple EG design, where no 
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order effects are possible. If the anchor test is internal to the two tests, then context or order (e.g., 

item location effects) may arise and need to be dealt with.  

An important potential drawback of the EG design for score equating is that the test form 

that has been previously equated has to be given at least twice—once when it was originally 

equated and then again as the old form in the equating of a new form. In some testing programs, 

it may be problematic for reasons of test security to reuse operational forms. This leads to 

consideration of special administrations for purposes of equating. However, if special 

nonoperational test administrations are arranged to collect equating data using the EG design, 

then the issue of examinee motivation arises, as discussed in Holland and Dorans (2006) 

The SG design requires a smaller sample size to achieve the same level of statistical 

accuracy as that obtained by an EG design with a larger sample, but it brings with it issues of 

order effects and it requires twice as much time to administer both tests. A particular problem 

with the SG design is that there is no way to assess whether order effects exist. The CB design, 

on the other hand, allows order effects to be estimated. However, if they are large and different 

for the two tests, then there may be no option but to ignore the data from the tests given second, 

and treat the result as an EG design. Because of the greatly reduced sample size, the resulting EG 

design may produce equating results that are less accurate than desired. Von Davier et al. (2004) 

proposed a formal statistical decision process for assessing order effects under the CB design.  

The anchor test design is the most complex design to execute well, especially if 

differences in ability between the old- and new-form equating samples are large. Whether an 

equating test is an external anchor or an internal anchor also has an impact, as does the number 

of anchor tests and the type of score linking plan employed. 

External anchor tests. It is often advised that the anchor test be a mini-version of the 

two tests being equated (Angoff, 1971). Making the anchor test a mini-version of the whole test 

is sometimes in conflict with the need to disguise an external anchor test to make it look like one 

of the scored sections of the test. For example, to be a mini-version of the test, the anchor test 

might need to include a variety of item types, whereas to mirror a specific section of the test, the 

anchor test might need to include only a limited number of item types. The term external anchor 

usually refers to items that are administered in a separately timed section and that do not count 

towards the examinee’s score. One major advantage of external anchors is that they may serve 

multiple purposes, such as equating, pretesting, and tryout of new item types. This is 
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accomplished by spiraling versions of the test with different content in this variable section. This 

process also can be used to improve test security by limiting the exposure of the anchor test to a 

relatively small proportion of the total group tested. 

For best practices, it is important to disguise the external anchor test so that it appears to 

be just another section of the test. One reason for this is that some examinees may identify the 

anchor test and, knowing that it does not count towards their final score, skip it or use the time to 

work on sections that do count towards their score (even though they are instructed not to do 

this). While this type of behavior may appear to benefit these examinees, because of the way that 

the anchor test is used in equating, such behavior may actually result in lowering the scores of all 

examinees if enough of them do it. This counterintuitive result can be explained as follows. The 

anchor test is used to compare the performance of the current group of examinees on the anchor 

test to that of a previous group. If a substantial number of the current examinees under-perform 

on the anchor test, this will make them appear less able than they really are. As a consequence, 

the new test will appear to be somewhat easier relative to the old test than it really is. In score 

equating, a raw score on an easier test is converted to a lower scaled score than would the same 

raw score on a harder test. Therefore the scores reported on the new test will be lower than they 

would have been had all examinees performed up to their abilities on the anchor test. In practice 

this effect is likely to be small, and for those examinees who worked on another section during 

the anchor test, the effect may be canceled by an increased score on the other section. As 

indicated in Section 5.1, it is best practice to exclude from the equating analysis any examinees 

whose anchor test performance is inconsistent with their total test performance. 

Internal anchor tests. Items in an internal anchor test are part of the assessment and 

count towards each examinee’s score. Internal anchor items are usually spread throughout the 

test. As noted earlier, some external anchors (i.e., items that are left out of or are external to the 

total score) are administered internally and consequently face some of the issues associated with 

internal anchors. For the observed-score equating methods described in Section 4, where the 

score on the anchor test plays an important role, it is desirable for the anchor test to be a mini-

version of the two tests. This may be more feasible for internal anchor tests than for external 

anchor tests.  

Because the items in an internal anchor test count towards the score, examinees are 

unlikely to skip them. On the other hand, once anchor test items have been used in the test 
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administration of the old form, the items may become susceptible to security breaches and 

become known by examinees taking the new form to be equated. For anchor items to be effective 

they must maintain their statistical properties across the old and new forms. The primary 

problems with internal anchor tests are context effects, along with the just-mentioned security 

breaches. Context effects can occur when common items are administered in different locations 

(e.g., Common Item 10 in one form is Item 20 in the other form), or under different testing 

conditions (i.e., paper and pencil versus computer delivered), or when they are adjacent to 

different kinds of items in the two tests. These effects have been well-documented (Brennan, 

1992; Harris & Gao, 2003; Leary & Dorans, 1985). Security breaches are an unfortunate reality 

for many testing programs, and due diligence is required to prevent them or to recognize them 

when they occur. 

Strengthening the anchor test. When there are only small differences in ability between 

the two samples of examinees used in an anchor test design, all linear equating methods tend to 

give similar results, as do all nonlinear equating methods. Linear and nonlinear equating methods 

are discussed in Section 4. To the extent that an anchor test design (Section 3.4) is almost an EG 

design (Section 3.2) with an anchor test, the need for the anchor test is minimized and the quality 

of equating increases. 

When the two samples are very different in ability, the use of the anchor test information 

becomes critical, because it is the only means for distinguishing differences in ability between 

the two groups of examinees from differences in difficulty between the two tests being equated. 

The most important properties of the anchor test are its stability across occasions when it is used 

(mentioned above) and its correlation with the scores on the two tests being equated. The 

correlation should be as high as possible. An advantage of internal anchors over external anchors 

is that their correlations with the tests being equated are usually high because the anchor items 

contribute to the total score.  

The implication of needing highly correlated anchors for best practices is that long 

anchor tests are generally better than short ones for equating. Longer anchors are usually more 

reliable and more highly correlated with the tests. In practice, it is desirable that both the anchor 

test and the tests being equated have high reliability.  

In many settings there is only one old form. Some tests are equated to two old forms, 

sometimes routinely, sometimes in response to a possible equating problem with one of the old 
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forms. The SAT links each new form back to four old forms through four different anchor tests. 

This design reduces the influence of any one old form on the determination of the new-form raw-

to-scale conversion. It is desirable to have links to multiple old forms, especially in cases where a 

large ability difference is anticipated between the groups involved in one of the links. 

4. Procedures for Equating Scores 

Many procedures for equating tests have been developed over the years. Holland and 

Dorans (2006) considered three factors when attempting to develop a taxonomy of equating 

methods: (a) common population versus common-item data collection designs, (b) observed-

score versus true-score procedures, and (c) linear versus nonlinear methods. 

Because equating is an empirical procedure, it requires a data collection design and a 

procedure for transforming scores on one test form to scores on another. Linear methods produce 

a linear function for mapping the scores from X to Y, while nonlinear methods allow the 

transformation to be curved. Observed-score procedures directly transform (or equate) the 

observed scores on X to those on Y. True-score methods are designed to transform the true 

scores on X to the true scores of Y. True score methods employ a statistical model with an 

examinee’s true score defined as his or her expected observed test score based on the chosen 

statistical model. The psychometric models used to date are those of classical test theory and 

item response theory. Holland and Hoskens (2003) have shown how these two psychometric 

models may be viewed as aspects of the same model. 

In this section, we will limit our discussion to observed-score equating methods that use 

the data collection designs described in Section 3. Our focus is on observed-score equating 

because true scores are unobserved and consequently primarily of theoretical interest-only. We 

provide brief discussions of only the most common observed-score procedures. The reader 

should consult Holland and Dorans (2006) for more complete treatments of observed-score and 

true score procedures. Here we first consider procedures used with common-population data 

collection designs and then procedures used with anchor tests or common-item designs. Within 

these two types of data collection designs we will look at linear and nonlinear procedures, which 

we will discuss at the same time. In addition we will be explicit about the population of 

examinees on which scores are equated. Common to any equating scenario is a population of 

examinees that we will call the target population, T, following the usage in von Davier et al. 
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(2004). In this usage, the target population refers to the source of the samples used to compute 

the linking function. 

4.1 Observed Score Procedures for Equating Scores on Complete Tests Given to a 

Common Population 

Three data collection designs that we described in Section 3 make use of a common 

population of examinees: the SG, the EG, and the CB designs. They all involve a single 

population, P, which is also the target population, T.  

We will use a definition of observed-score equating that applies to either linear or 

nonlinear procedures depending on whether additional assumptions are satisfied. This allows us 

to consider both linear and nonlinear observed-score equating methods from a single point of 

view. 

Some notation will be used throughout the rest of this chapter. The cumulative 

distribution function, cdf, of the scores of examinees in the target population, T, on test X is 

denoted by FT(x), and it is defined as the proportion of examinees in T who score at or below x 

on test X. More formally, FT(x) = P{X ≤ x | T}, where P{ . | T} denotes the population 

proportion or probability in T. Similarly, GT(y) = P{Y ≤ y | T}, is the cdf of Y over T. 

Cumulative distribution functions increase from 0 up to 1 as x (or y) moves from left to right 

along the horizontal axis in a two way plot of test score by proportion of examinees. In this 

notation, x and y may be any real values, not necessarily just the possible scores on the two tests. 

For distributions of observed scores such as number right or rounded formula scores, the cdfs are 

step functions that have points of increase only at each possible score (Kolen & Brennan, 2004). 

In Section 4.3, we address the issue of the discreteness of score distributions in detail. 

The equipercentile equating function. The equipercentile definition of comparable 

scores is that x (an X-score) and y (a Y-score) are comparable in T if FT(x) = GT(y). This means 

that x and y have the same percentile in the target population, T. When the two cdfs are 

continuous and strictly increasing, the equation FT(x) = GT(y) can always be satisfied and can be 

solved for y in terms of x. Solving for y leads to the equipercentile function, EquiYT(x), that links 

x to y on T, defined by: 

y = EquiYT(x) =
1( ( ))G F x−

T T . (1) 
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In Equation 1, y = 1( )G p−
T  denotes the inverse function of p = GT(y). Note that with discrete data, 

this relationship does not hold because for most x scores there is no y score for which the two 

cumulative distributions, one for x and one for y are exactly equal. Hence, with most 

applications, steps are taken to make the data appear continuous, and different steps can yield 

different answers.  

We have followed Dorans and Holland (2000), Holland and Dorans (2006), and von 

Davier et al. (2004) in explicitly including the target population T in the definition of EquiYT(x). 

The notation emphasizes that T (as well as X and Y) can influence the form of the equipercentile 

function. 

In general, there is nothing to prevent EquiYT(x) from varying with the choice of T, 

thereby violating the subpopulation invariance requirement of Section 1.2. The equipercentile 

function is used for equating, and other kinds of linking. For equating, we expect the influence of 

T to be small or negligible and we call the scores equivalent. In other kinds of linking, T can 

have a substantial effect and we call the scores comparable in T. 

The linear equating function. If Equation 1 is satisfied, then EquiYT(x) will transform 

the distribution of X-scores on T so that it is the same as the distribution of Y-scores on T.  

It is sometimes appropriate to assume that the two cdfs, FT(x) and GT(y), have the same 

shape and only differ in their means and standard deviations. To formalize the idea of a common 

shape, suppose that FT(x) and GT(y) both have the form, 

FT(x) = K[(x—μXT)/σXT]  and  GT(y) = K[(y—μYT)/σYT], (2) 

where K is a cdf with mean zero and standard deviation 1.  

When Equation 2 holds, FT(x) and GT(y) both have the shape determined by K. In this 

case, it can be shown that the equipercentile function is the linear function, LinYT(x), defined as 

LinYT(x) = μYT + (σYT/σXT)(x—μXT). (3) 

The linear function may also be derived as the transformation that gives the X-scores the 

same mean and standard deviation as the Y-scores on T. Both of the linear and equipercentile 

functions satisfy the symmetry requirement (c) of Section 1.2.1. This means that LinXT(y) = 



20 

LinYT
-1(x), and EquiXT(y) = EquiYT

-1(x) (i.e., equating Y to X is the inverse of the function for 

equating X to Y). In general, the function, EquiYT(x), curves around the function, LinYT(x). 

Two special cases of LinYT(x) that follow from very strong assumptions are the mean 

linking function and the identity function. When the two standard deviations in Equation 3 are 

equal, then LinYT(x) takes on the form MeanYT(x) = x + (μYT—μXT). The mean linking function 

adjusts the scores of X so that they have the same mean as Y does on T. When both the means 

and the standard deviations in Equation 3 are equal, LinYT(x) takes on the form Iden(x) = x. The 

identity function makes no adjustment at all to the X-scores. It corresponds to assuming that the 

raw scores on X and Y are already comparable. Both MeanYT(x) and Iden(x) are thought to be 

useful best practices when the samples are very small and cannot support accurate estimates of 

the moments of X and Y on T. They are discussed in more detail in Kolen and Brennan (2004) 

and Skaggs (2005). We address them in Section 6. 

The linear function requires estimates of the means and standard deviations of X- and Y-

scores over the target population, T. It is easy to obtain these estimates for the SG and EG 

designs described in Section 3 (see Angoff, 1971, or Kolen & Brennan, 2004). It is less 

straightforward to obtain estimates for the CB design, as noted by Holland and Dorans (2006).  

4.2. Procedures for Equating Scores on Complete Tests When Using Common Items 

The anchor test design is widely used for equating scores because its use of common 

items to control for differential examinee ability gives it greater operational flexibility than the 

approaches using common examinees. Examinees need only take one test, and the samples need 

not be from a common population. However, this flexibility comes with a price. First of all, the 

target population is less clear-cut for the NEAT design (see Section 3.4)—there are two 

populations, P and Q, and either one could serve as the target population. In addition, the use of 

the NEAT design requires additional assumptions to allow for the missing data—X is never 

observed in Q and Y is never observed in P. We use the term complete test to indicate that 

everyone in P sees all items on X and that that everyone in Q see all items on Y. As indicated at 

the beginning of Section 3, our use of the term missing data is restricted to data that are missing 

by design. The assumptions needed to make allowances for the missing data are not easily tested 

with the observed data, and they are often unstated. We will discuss two distinct sets of 
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assumptions that may be used to justify the observed score procedures that are commonly used 

with the NEAT design.  

Drawing from what they saw being done in practice, Braun and Holland (1982) proposed 

that the target population for the NEAT design, or what they called the synthetic population, be 

created by weighting P and Q. They denoted the synthetic population by T = wP + (1—w)Q, by 

which they meant that distributions (or moments) of X or Y over T are obtained by first 

computing them over P and Q, separately, and then averaging them with w and (1—w) to get the 

distribution over T. When w = 1, T = P and when w = 0, T = Q. In practice, w is often taken to 

be proportional to the two sample sizes from P and Q. This choice of w is implicit when the data 

for the anchor test are pooled into a total group, as done in Angoff (1971) and Petersen et al. 

(1989). Of course, other choices of w are possible, such as w = ½, which gives equal weight to P 

and Q. There is considerable evidence that the choice of w has a relatively minor influence on 

equating results, for example, see von Davier et al. (2004). This insensitivity to w is an example 

of the population invariance requirement of Section 1.2. The definition of the synthetic 

population forces the user to confront the need to create distributions (or moments) for X on Q 

and Y in P, where there are no data. In order to do this, assumptions must be made about the 

missing data. 

Equating methods used with the NEAT design can be classified into two major types, 

according to the way they use the information from the anchor. The first type of missing data 

assumption commonly employed is of the post stratification equating (PSE) type; the second is 

of the chain equating (CE) type. Each of these types of assumptions asserts that an important 

distributional property that connects scores on X or Y to scores on the anchor test A is the same 

for any T = wP + (1—w)Q (i.e., is population invariant). Our emphasis here is on the role of 

such assumptions for observed-score equating because that is where they are the most 

completely understood at this time. However, they are likely to have parallels for true-score 

equating as well, a topic worthy of future research. In addition to the PSE and CE types of 

procedures, classical test theory may be used to derive an additional, less frequently used, linear 

observed-score procedure for the NEAT design—the Levine observed-score equating function 

(Kolen & Brennan, 2004). 

The PSE types of assumptions all have the form that the conditional distribution of X 

given A (or of Y given A) is the same for any synthetic population, T = wP + (1—w)Q. In this 
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approach, we estimate, for each score on the anchor test, the distribution of scores on the new 

form and on the old form in T. We then use these estimates for equating purposes as if they had 

actually been observed in T. The PSE type of equating assumes that the relationship that 

generalizes from each equating sample to the target population is a conditional relationship. In 

terms of the missing data in the NEAT design, this means that conditional on the anchor test 

score, A, the distribution of X in Q (where it is missing) is the same as in P (where it is not 

missing). In the special case of an EG design with anchor test, P = Q and the PSE assumptions 

hold exactly. When P and Q are different, the PSE assumptions are not necessarily valid, but 

there are no data to contradict them. 

The CE assumptions all have the form that a linking function from X to A (or from Y to 

A) is the same for any synthetic population, T = wP + (1—w)Q. In this approach, we link the 

scores on the new form to scores on the anchor and then link the scores on the anchor to the 

scores on the old form. The chain formed by these two links the scores on the new form to those 

on the old form. The CE type of equating approach assumes that the linking relationship that 

generalizes from each equating sample to the target population is an equating relationship. It is 

less clear for the CE assumptions than for the PSE assumptions what is implied about the 

missing data in the NEAT design (Kolen & Brennan, 2004, p. 146).  

In the special case of an EG design with anchor test, P = Q and the CE assumptions hold 

exactly. In this special situation, the corresponding methods based on either the PSE or the CE 

assumptions will produce identical results. When P and Q are different, the PSE assumptions and 

CE assumptions can result in equating functions that are different and there are no data to allow 

us to contradict or help us choose between either set of assumptions. 

The PSE types of equating procedures. There are both nonlinear and linear PSE 

procedures. They may be viewed as based on the following two assumptions, which we adopt 

from von Davier et al. (2004). 

PSE1: The conditional distribution of X given A over T, P{X = x | A = a, T} is the same 

for any T of the form T = w P + (1—w) Q. 

PSE2: The conditional distribution of Y given A over T, P{Y = y | A = a, T} is the same 

for any T of the form T = w P + (1—w) Q. 
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PSE1 and PSE2 are population invariance assumptions because they require that the conditional 

distributions are the same for any target population of the form T = w P + (1—w) Q. 

The clearest examples of procedures of the PSE type are frequency estimation equating 

(Angoff, 1971, Petersen et al., 1989, and Kolen & Brennan, 2004), and the PSE version of kernel 

equating (von Davier et al., 2004).  

Linear observed-score PSE equating procedures include (a) Tucker equating (Angoff, 

1971, Petersen et al., 1989, and Kolen & Brennan, 2004), (b) the Braun-Holland method (Braun 

& Holland, 1982, and Kolen & Brennan, 2004), and (c) the linear PSE version of kernel equating 

(von Davier et al., 2004). The linear PSE version of kernel equating is a way to implement the 

Braun-Holland procedure and both are directly based on PSE1 and PSE2. Ledyard R Tucker was 

originally motivated by selection theory in the development of the method that bears his name 

(Angoff, 1971). However, the following versions of PSE1 and PSE2 may also be used to derive 

Tucker equating with no reference to selection. 

TUCK1: (a) The conditional mean of X given A over T is linear in A and is the same for 

any T = w P + (1—w) Q, and (b) the conditional variance of X given A over T is 

constant in A and is the same for any T. 

TUCK2: (a) The conditional mean of Y given A over T is linear in A and is the same for 

any T = w P + (1—w) Q, and (b) the conditional variance of Y given A over T is 

constant in A and is the same for any T. 

TUCK1 and TUCK2 are population invariance assumptions in the same sense that PSE1 and 

PSE2 are. 

The Braun-Holland and the linear PSE version of kernel equating do not make the more 

restrictive assumptions of linear conditional means and constant conditional variances that 

appear in TUCK1 and TUCK2. For this reason, they may give somewhat different results from 

the Tucker method when the conditional means are nonlinear and/or the conditional variances 

are not constant. 

The CE types of equating procedures. The idea behind the CE procedures is to first 

link X to A using the data from P, then to link A to Y using the data from Q, and finally to 

combine these two links to equate X to Y through A. Von Davier et al. (2004) showed that the 
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following two assumptions are sufficient to interpret chain equating as an observed-score 

equating function for any target population of the synthetic population form. 

CE1: The equipercentile function linking X to A on T is the same for any T of the form 

T = w P + (1—w) Q. 

CE2: The equipercentile function linking A to Y on T is the same for any T of the form 

T = w P + (1—w) Q. 

There are both linear and nonlinear versions of CE. Linear observed-score CE equating 

procedures include (a) the chained linear equating function (Angoff, 1971) and (b) the linear CE 

version of kernel equating (von Davier et al., 2004). Because it is derived as a type of 

equipercentile equating function, the linear CE version of kernel equating is based on 

assumptions CE1 and CE2. Von Davier, Holland, and Thayer (2004) maintained that the chained 

linear equating function is a linear equating function on a target population T as defined in 

Equation 3 when the linear versions of CE1 and CE2 hold. These are: 

CL1: The linear linking function equating X to A on T is the same for any T of the form 

T = w P + (1—w) Q. 

CL2: The linear linking function equating A to Y on T is the same for any T of the form 

T = w P + (1—w) Q. 

Again, CL1 and CL2 are examples of population invariance assumptions. 

4.3 A Linear Observed-Score Equating Procedure From Classical Test Theory 

In addition to the PSE and CE types of procedures, classical test theory may be used to 

derive an additional linear observed-score procedure for the NEAT design—the Levine 

observed-score equating function, LevYT(x) (Kolen & Brennan, 2004). LevYT(x) may be derived 

from two population invariance assumptions that are different from those that we have 

considered so far and that are based on classical test theory.  

Following Holland and Dorans (2006), we use the formulation of classical test theory 

described in Holland and Hoskins (2000). The true scores, τX and τY, are defined as latent 

variables underlying each test that have these properties: τX = E(X | τX, T), and τY = E(Y | τY, T), 

for any target population, T. From these two assumptions it follows that μXT = E(X |T) = E(τX 
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|T), and μYT = E(Y |T) = E(τY |T). To formalize the assertion that X and Y measure the same 

construct, we assume the true scores are congeneric, that is, that they are linearly related by 

τY = ατX + β, (4) 

where α and β may depend on the target population, T. The idea behind true-score equating is to 

estimate α and β and to use Equation 4 to find the link between the two sets of true scores. Lord 

(1980) takes the position that only true scores can ever really be equated, but it can be argued that 

this is a consequence of his very stringent interpretation of the equity requirement of Section 1.2. 

Holland and Dorans (2006) used the form of classical test theory discussed in Holland 

and Hoskens (2003) to derive the Levine observed score equating function from two 

assumptions. In addition to using the true score definitions for test scores X and Y above, they 

defined an anchor true score as a latent variable, τA, that underlies the observed anchor score A, 

and that satisfies: τA = E(A | τA, T), for any target population, T. From this definition, it follows 

that: μAT = E(τA | T). To formalize the intuition that X, Y, and A all measure the same construct, 

we assume their true scores are linearly related in a way that holds for all T (i.e., the three 

measures are congeneric). These assumptions are given below: 

LL1: τX = ατA + β, where α and β do not depend on the target population, T. 

LL2: τY = γτA + δ, where γ and δ do not depend on the target population, T. 

The results of all of these assumptions and definitions are that the Levine observed-score 

equating function and its assumptions are true score analogues of the Tucker equating method 

and the Tucker method's assumptions. As shown in Kolen and Brennan (2006) and elsewhere, 

these assumptions about true scores lead to an equating relationship for observed scores. 

5. Data Processing Practices Prior to Computation of Equating Functions. 

Prior to equating, several steps should be taken to improve the quality of the data. These 

best practices of data processing deal with sample selection, item screening, and continuizing 

and smoothing score distributions. 
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5.1 Sample Selection 

Tests are designed with a target population in mind (defined as T throughout Section 4). 

For example, admissions tests are used to gather standardized information about candidates who 

plan to enter a college or university. The SAT excludes individuals who are not juniors or seniors 

in high school from its equating samples because they are not considered members of the target 

population. Consequently, junior high school students, for whom the test was not developed but 

who take the test, are not included in the equating sample. In addition, it is common practice to 

exclude individuals who may have taken the anchor test (whether internal or external) at an 

earlier administration. This is done to remove any potential influence of these individuals on the 

equating results. Examinees who perform well below chance expectation on the test are 

sometimes excluded; though many of these examinees may have already been excluded if they 

were not part of the target group. There is an issue as to whether non-native speakers of the 

language in which the test is administered should also be excluded. One study by Liang, Dorans, 

and Sinharay (2009) suggests this may not be an issue as long as the proportion of non-native 

speakers does not change markedly across administrations. 

Statistical outlier analysis can be used to identify those examinees whose anchor test 

performance is substantially different from their performance on the operational test (i.e., the 

scores are so different that both scores cannot be plausible indicators of the examinee’s ability). 

Removing these examinees from the equating sample prevents their unlikely performance from 

having an undue effect on the resulting equating function.  

5.2 Checking That Anchor Items Act Like Common Items 

For both internal anchor (anchor items count towards the total score) and external anchor 

(items do not count towards the score) tests, the statistical properties of the common items should 

be evaluated to make sure they have not differentially changed from the one test administration 

to the other. Differential item functioning (DIF) methods may be used to compare the 

performance of the common items with the two test administrations treated as the reference and 

focal groups, and the total score on the common items as the matching criterion (see Holland & 

Wainer, 1993, especially chapter 3). Simple plots of item difficulty values and other statistics 

may also be used to detect changes in items. Internal common items are susceptible to context 

effects because they may be embedded within different sets of items in the two tests. Changes in 
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widely held knowledge may also lead to changes in performance on anchor test items. For 

example, a hard question about a new law on a certification exam may become very easy once 

the law becomes part of the standard training curriculum. There are many examples of this type 

of rapid aging of test questions. 

5.3 The Need to Continuize the Discrete Distributions of Scores 

The equipercentile function defined in Section 5.2 can depend on how FT(x) and GT(y) 

are made continuous or continuized. Test scores are typically integers, such as number-right 

scores or rounded formula-scores. Because of this, the inverse function, required in equation 1 of 

Section 4.1.1, is not well defined (i.e., for many values of p, there is no score, y, for which p = 

GT(y)). This is not due to the finiteness of real samples, but rather to the discreteness of real test 

scores. To get around this, there are three methods of continuization of FT(x) and GT(y) that are 

in current use. Holland and Dorans (2006) treated two of these methods, the linear interpolation 

and kernel smoothing methods, in detail. The linear equating function defined in Equation 3 of 

Section 4.1 is a third continuization method. 

There are two primary differences between the first two approaches to continuization. 

First, the use of linear interpolation results in an equipercentile function that is piecewise linear 

and continuous. Such functions may have kinks that practitioners feel need to be smoothed out 

by a further smoothing, often called post-smoothing (Fairbank, 1987, Kolen & Brennan, 2004). 

In contrast, kernel smoothing results in equipercentile functions that are very smooth (i.e., 

differentiable everywhere) and that do not need further post-smoothing. Second, the 

equipercentile functions obtained by linear interpolation always map the highest score on X into 

the highest score on Y and the same for the lowest scores (unlike kernel smoothing and the linear 

equating function). While it is sometimes desirable, there are cases where the highest score on an 

easier test should not be mapped onto the highest score of a harder test. For more discussion of 

this point, see Petersen et al. (1989), Kolen and Brennan (2004), and von Davier et al. (2004). 

5.4. Presmoothing Score Distributions 

Irregularities in the score distributions can produce irregularities in the equipercentile 

equating function that do not generalize to other groups of test-takers. Consequently, it is generally 

considered advisable to presmooth the raw-score frequencies in some way prior to equipercentile 

equating. The purpose of this step is to eliminate some of the sampling variability present in the 
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raw-score frequencies, in order to produce smoother cdfs for computation of the equipercentile 

function. If presmoothing is done so as to preserve the essential features of the score frequencies, it 

will reduce the sampling variability in the estimated frequencies without introducing significant 

bias. The resulting estimates will be closer to the underlying frequencies in the target population, 

T. When presmoothing is done with a model that does not describe the data well, then the 

estimated frequencies will be biased estimates of the underlying frequencies in T. 

A limitation of equipercentile equating is that the equating relationship cannot be 

computed for any possible scores above the highest observed score or below the lowest observed 

score. If we could observe the scores of the entire target population, T, on both forms of the test, 

this limitation would not be a problem. Smoothing can help solve this problem because many 

smoothing methods will produce a smoothed distribution with probabilities (possibly very small) 

at the highest and lowest score levels, even if no test-takers actually attained those scores.  

Kolen and Jarjoura (1987) and Kolen and Brennan (2004) discussed several methods for 

presmoothing. Von Davier et al. (2004) described the use of loglinear models for presmoothing. 

Their work is based on Holland and Thayer (1987, 2000), and they gave examples of 

presmoothing for the SG, EG, CB, and NEAT designs.  

The type of data available for presmoothing depends on the data collection design. The 

EG design is the simplest and results in two independent univariate score distributions, one for X 

and one for Y. These may be independently presmoothed. The SG, CB, and NEAT designs result 

in one or more bivariate distributions containing the joint frequencies for the (X,Y)-, (X,A)-, or 

(Y,A)-pairs in the sample(s). For these designs, presmoothing should be done on the joint 

distribution(s). Presmoothing of only the marginal distributions, as if the X, Y, and A scores 

were all from different samples, ignores the correlations between X, Y, and A and can lead to 

incorrect standard error estimates.  

When presmoothing data, it is important to achieve a balance between a good 

representation of the original data and smoothness. Smoothness reduces sampling variability 

while a good representation of the data reduces the possibility of bias. For example, if a loglinear 

model is used, it needs to preserve the most important features of the data, such as means, 

variances, and skewness and any other special features. The more parameters that are estimated 

for the model, the better the model will represent the original data, but the less smooth the fitted 

model becomes.  
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6. Evaluating an Equating Function 

Quality and similarity of tests to be equated, choice of data collection design, 

characteristics of anchor test in relation to the total tests, sample sizes and examinee 

characteristics, screening items and tests for outliers and choice of analyses all involve best 

practices that contribute to a successful equating. First, we summarize best practices. Then we 

discuss challenges to the production of quality equating and close by discussing directions for 

additional research. 

6.1 Best Practices 

While we emphasized the structure of the data collection designs in Section 3, it should 

be mentioned here that the amount of data collected (sample size) has a substantial effect on the 

usefulness of the resulting equatings. Because it is desirable for the statistical uncertainty 

associated with test equating to be much smaller than the other sources of variation in test 

results, it is important that the results of test equating be based on samples that are large enough 

to insure this. 

Ideally, the data should come from a large representative sample of motivated examinees 

that is divided in half either randomly or randomly within strata to achieve equivalent groups. 

Each half is administered either the new form or the old form of a test. If timing is generous and 

examinees are up to the task of taking both tests, a counterbalanced design could be employed in 

which each half of the sample is broken into halves again and then both the new and old forms 

are administered to examinees in a counterbalanced order. 

When an anchor test is used, the items are evaluated via differential item functioning 

(DIF) procedures to see if they are performing in the same way in both the old and new form 

samples. The anchor test needs to be highly correlated with the total tests. All items on both tests 

are evaluated to see if they are performing as expected.  

It is valuable to equate with several different models, including both linear and 

equipercentile models. In the EG case, the equipercentile method can be compared to the linear 

method using the standard error of equating which describes sampling error, and the difference 

that matters (DTM), an effect size that can be used to assess whether differences in equating 

functions have practical significance or is an artifact of rounding. Holland and Dorans (2006) 

describe the DTM, the standard error of equating and the standard error of the difference in 

equating or SEED. If the departures from linearity are less than the DTM and less than what 
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would be expected due to sampling error, the linear model is often chosen on the grounds of 

parsimony because it was not sufficiently falsified by the data. Otherwise, the more general, less 

falsifiable, equipercentile model is selected. 

In the anchor test case, it is particularly important to employ multiple models as each 

model rests on different sets of assumptions. The search for a single best model that could be 

employed universally would be unwise data analysis. As Tukey (1963) indicated in his 

discussion of Rasch’s (1960) quest for the best fitting model, “…We must be prepared to use 

many models, and find their use helpful for many specific purposes, when we already know they 

are wrong—and in what ways. …In data analysis…we must be quite explicit about the 

deficiencies of the models with which we work. If we take them at face value, we can—all too 

frequently—be led to unreasonable and unhelpful actions. If we try to make them ‘fit the facts,’ 

we can ensure sufficient mathematical complexity to keep us from any useful guidance” (p. 504). 

An equating should be checked for its reasonableness. How do we determine 

reasonableness? We compare the raw-to-scale conversion for the new form to those that have 

been obtained in the past. Is the new form conversion an outlier? Is it consistent with other 

difficulty information that may be available for that form and other forms that have been 

administered in the past? Is the performance of the group taking the new form consistent with the 

performance of other groups that are expected to be similar to it? For example, in testing 

programs with large volumes and relatively stable populations, it is reasonable to expect that the 

new form sample will have a similar scale score distribution to that obtained at the same time the 

year before. If the test is used to certify mastery, then the pass rates should be relatively stable 

from year to year, though not necessarily across administrations within a year. 

6.2 Challenges to Producing High Quality Equatings 

Large representative motivated samples that result from a random assignment of test 

forms to examinees are not always attainable. Reliability is not always as high as desired. 

Anchor tests may not be very reliable, especially internal anchors with few items. Anchors, 

especially external anchors, are not always highly related to the tests being equated. Tests are not 

always appropriate for the group that takes them. These issues often arise when best practices are 

not followed. 

Data collection design issues. Some threats to sound equating are related to the choice of 

data collection design. Test security is an issue for many high-stakes licensure, certification, and 
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admissions tests. To help maintain test security, many testing programs want to give a new form 

of the exam at every administration. Consequently, they do not want to re-administer an old form 

for equating purposes. Instead, they prefer to use an anchor test or common item design so only a 

subset of items is re-administered for equating purposes. The NEAT design is often used because 

of the greater flexibility it provides. Statistical procedures are needed to adjust for ability 

differences between groups when the NEAT design is used. Assumptions need to be made in 

order to make these adjustments. The assumptions may be flawed.  

Psychometric properties of the tests and anchors. Characteristics of the test to be 

equated affect the quality of equating. Pretesting of untried items prior to their operational use 

produces higher quality exams. The absence of pretesting may result in tests with fewer scorable 

items than planned. The resulting shorter, less reliable tests are harder to equate because a greater 

portion of score variability is noise and the resultant equating functions are less stable. More 

importantly, tests made up of unpretested items can turn out to be different in content and 

difficulty from the tests to which they are to be equated; these factors increase the difficulty of 

equating. At the extreme, tests may turn out to be too easy or too difficult for the intended 

population; this results in data that are not amenable for linking to other tests because the 

distributions are so skewed, and relationships with other scores are attenuated. 

The role of the anchor test is to provide a common score that can be used to adjust for 

group ability differences before adjusting for test difficulty differences via equating. Scores from 

short anchor tests tend to have inadequate reliabilities, and consequently less than desirable 

correlations with the test scores. Low correlations may also result when the content of the anchor 

test differs from the test. Context effects can affect the comparability of anchor items. Anchors 

that are too hard or too easy for the target population produce skewed score distributions that are 

not helpful for equating.  

To disguise the anchor items in a NEAT design, the items are often embedded within 

sections of scored operational items. Internal anchors or common items may not be located in the 

same item positions within the old and new forms, making them more susceptible to context 

effects that may diminish their utility as measures of ability. In addition, the common items may 

be few in number, making the anchor test relatively unreliable and less useful for identifying 

differences in ability between the samples.  
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Samples. Unrepresentative or unmotivated samples undermine equating. Special study data 

collections need to include incentives that ensure that examinees will take the test seriously. 

Special care should be taken to ensure that only members of the population of interest are included 

in the samples. If possible, the sample should be representative of the population as well. 

With the NEAT design, the old and new form sample may perform very differently on 

the anchor test. Large ability differences on the anchor test tend to yield situations where 

equating is unsatisfactory unless the anchor is highly related to both tests to be equated. In this 

setting, different equating methods tend to give different answers unless the anchor test is 

strongly related to both the old and new tests. This divergence of results is indicative of a poor 

data collection design.  

Equating cannot be done effectively in small samples. The smaller the sample size is, the 

more restricted is the class of stable equating methods. It is often useful to pre-smooth the 

sample frequencies, especially when samples are not large enough to yield small standard errors 

of equating. Smoothing score distributions works in moderately-sized samples, but does not help 

much with very small samples, especially when it is not clear how representative the sample is of 

the intended population. In these situations, one option may be to make strong assumptions about 

the equating function. For example, it may be necessary to assume that it is the identity or that it 

differs from the identity by a constant that is estimated by the data. Another alternative is the 

circle-arc linking method (Livingston & Kim, 2009), which makes arbitrary assumptions about 

the score points that anchor the end points on an arc that runs through these two points and the 

mean scores. The authors have used simulation results based on real data to demonstrate that this 

procedure is superior under certain conditions to other procedures. These findings are normative 

in nature in that the method did better than other methods. In an absolute sense, however, the 

results of this method still may fall short of producing satisfactory equating when samples are 

small in size.  

The best practices solution to the small sample size problem may be to report raw scores 

and state that they cannot be compared across test forms. If the sample size suggested by 

consideration of standard errors is not achieved, raw scores could be reported with the caveat that 

they are not comparable to other scores, but that they could be made comparable when adequate 

data become available. This would protect testing organizations from challenges resulting from 
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the use of either biased linking functions or unstable equating functions. To do otherwise might 

be problematic over the long term. 

Lack of population invariance. One of the most basic requirements of score equating is 

that equating functions, to the extent possible, should be subpopulation invariant (requirement e 

in Section 1.2.1).4 The same construct and equal reliability requirements (Requirements 1 and 2) 

are prerequisites for subpopulation invariance. One way to demonstrate that two tests are not 

equatable is to show that the equating functions used to link their scores are not invariant across 

different subpopulations of examinees. Lack of invariance in a linking function indicates that the 

differential difficulty of the two tests is not consistent across different groups. The invariance can 

hold, however, if the relative difficulty changes as a function of score level in the same way 

across subpopulations. If, however, the relative difficulty of the two tests interacts with group 

membership, or there is an interaction among score level, difficulty and group, then invariance 

will not hold, and the test construction process may be out of control in that markedly 

nonparallel test forms are being constructed. 

Note that subpopulation invariance is a matter of degree. In the situations where equating 

is usually performed, subpopulation invariance implies that the dependence of the equating 

function on the subpopulation used to compute it is small enough to be ignored. 

Score equity assessment (SEA) focuses on whether or not test scores on different forms 

that are expected to be used interchangeably are in fact interchangeable across different 

subpopulations (Dorans & Liu, 2009). It uses the subpopulation invariance of linking functions 

across important subgroups (e.g., gender groups) to assess the degree of score exchangeability. 

SEA focuses on invariance at the reported score level. It is a basic quality control tool that can be 

used to assess whether a test construction process is under control, as can checks on the 

consistency of raw-to-scale conversions across forms (Haberman et al., 2008). 

6.3 Additional Directions for Future Research 

There is a need for comprehensive empirical investigations of equating conditions as well 

as additional theoretical work that can further inform the best practices described in this paper. 

The various challenges discussed in previous portions of this section should be explored via 

systematic investigations of the appropriateness of different equating procedures in a variety of 

realistic settings. These empirical investigations have their progenitors, such as the 

comprehensive studies conducted by Marco, Petersen, and Stewart (1983), as well as other 
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studies cited in Kolen and Brennan (2004). A variety of factors could be manipulated in a series 

of studies that examines the robustness of both newer approaches like kernel equating and older 

linear and nonlinear methods. Recent work by Sinharay and Holland (2009) is indicative of the 

kind of work that can be done to better understand the robustness of various procedures to 

violation of their assumptions. 

Foremost among factors that need to be studied are the effects on equating results of the 

magnitude of ability differences between P and Q as measured by the anchor items, and of the 

shape of the score distributions. In addition, it would be worthwhile to manipulate difficulty 

differences between X, Y, and A, as well as the reliability of the total score and the anchor score, 

expanding on investigations such as Moses and Kim (2007). Correlations of the anchor score 

with total score, and sample size should also be manipulated and studied. Ideally, real data would 

be used as the starting point for these studies. 

Another area that needs attention is the consistency of equating results over long periods 

of time, a point made by Brennan (2007) and studied recently on the SAT by Haberman et al. 

(2008). These researchers examined the consistency of SAT Math and SAT Verbal equatings 

between 1995 and 2005 and found them to be very stable. This type of work is especially 

important in settings where tests are administered on an almost continuous basis. In these 

settings, substantial score drift may occur such that scores may not be comparable across periods 

as short as one year. The quest to test continuously may subvert one of the basic goals of fair 

assessment. 

Several new methods for equating as well as some new definitions have been and will be 

introduced. These methods should be stress tested and adapted before they are adopted for use. 

Procedures that make strong assumptions about the data may give answers that are theoretically 

pleasing but are difficult to apply in practice and even more difficult to justify to test users. 

Holland (1994) noted that tests are both measurements and contests. They are contests in the 

sense that examinees expect to be treated fairly—equal scores for comparable performance. 

Equating, as discussed by Dorans (2008), can be thought of as a means of ensuring fair contests: 

An emphasis needs to be placed on fair and equitable treatment of examinees that is 

commensurate with their actual performance on the test they took. The use of best practices in 

equating is essential to achieving this goal. 
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The focus of this paper has been on best practices for score equating. Score equating is 

only one aspect of the score reporting process. There are other components of the score reporting 

process that affect the final raw-to-scale conversions. Because these components are not as 

amenable to mathematical treatment as score equating methods, they have not received as much 

treatment as they should. The best score equating practices can be undermined by a weakness 

elsewhere in the process, such as poorly defined test specifications or the use of a flawed old 

form scaling function. A few of these non-score-equating components have been mentioned in 

this report, but the treatment has not been as complete as it should be.  
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Notes 
 

1 The intended audience for this report is broad, ranging from high-level graduate students to 

experienced staff who want to compare their current practices with something closer to the 

ideal practice. As such, treatments that appear cursory to some readers may appear too 

detailed for others. In addition, these best practices reflect our perspective which might be 

called applied theoretical, a perspective that emphasizes principled practice over expediency 

and which attempts to achieve the best results possible in achieving the equating that yields 

the best scaling solution in a given setting. Others may have different perspectives as to what 

constitutes best practice. 
 

2 There are cases where anchor items are interspersed within the same section with items that 

count toward the total score. These items that are administered internally but are external to 

the total test score are affected by the same issues that affect internal anchor items. 

3 There are exceptions to this general case. For example, sometimes a multiple-choice anchor test 

is used to link two versions of an all constructed-response test. Here the anchor score is more 

reliable than the scores to be equated. Although the characteristics of anchor tests are usually 

not specifically described in the requirements of equating or in summaries of these 

requirements, in practice linkings that utilize anchors that measure different constructs than 

the tests to be equated are considered unlikely to meet the requirements of equating. 

4 Note that these subpopulations should not be defined on the basis of the tests to be equated or 

the anchor test because the assumptions made by equating methods are sensitive to direct 

selection on the test or anchor as demonstrated by Wright and Dorans (1993). 




